TFT-LCD Module # **SPECIFICATION** | Customer: | | |-------------|-----------------| | Model Name: | VL097IA13 V.1 | | SPEC NO.: | | | Date: | | | Version: | 01 | | | | | Preliminar | y Specification | | | ification | | <u> </u> | | ### For Customer's Acceptance | Approved by | Comment | |-------------|---------| | | | | | | | | | | | | | Approved by | Reviewed by | Prepared by | |-------------|-------------|-------------| | | | | | | | | | 11 167 | | | ### **Record of Revision** Toroson Group copyright 2019 All right reserved, Copying forbidden. | Version | Revise Date | Page | Content | |----------|-------------|-------|---| | VGISIOII | Nevise Date | 1 age | Content | | 01 | 2019.06.25 | 01/16 | Add power consumption&Weight& package information | | | | | | | | | | | | | ro | R | , | | | | | | | ## **Contents** | 1.General Specifications | | |--------------------------------------|----| | 2.Pin Assignment | | | 3.Operation Specifications | | | 3.1.Absolute Maximum Ratings | 04 | | 3.2. Typical Operation Conditions | | | 3.3.Current Consumption | | | 3.3.1.Current for LCD Driver | | | 3.3.2.Current for LED Driver | | | 3.4.Power Sequence | | | 3.5. Timing Characteristics | | | 3.5.1. DC Electrical Characteristics | 07 | | 3.5.2. Timing Table | | | 3.5.3.LVDS Data Input Format | | | 4. Optical Specifications | | | 5.Reliability Test Items | | | 6.General Precautions | 14 | | 6.1.Safety | | | 6.2.Handling | | | 6.3.Static Electricity | | | 6.4.Storage | | | 6.5.Cleaning | | | 7.Mechanical Drawing | | | 8.Package Drawing | 16 | | | | SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 01/16 # 1. General Specifications | No. | Item | Specification | Remark | |-----|--------------------------------|-------------------------------|--------| | 1 | LCD size | 9.7 inch | | | 2 | Driver element | a-Si TFT active matrix | | | 3 | Resolution | 1024X3(RGB)X768 | | | 4 | Display mode | Normally Black, Transmissive | | | 5 | Dot pitch | 0.192(W)x0.192(H) mm | | | 6 | Active area | 196.608(W)x147.456(H) mm | | | 7 | Module size | 210.16(W)x164.25(H)x2.85(D)mm | | | 8 | View direction(Gray inversion) | Free | | | 9 | Surface treatment | Plain | | | 10 | Color arrangement | RGB-stripe | | | 11 | Interface | LVDS | | | 12 | Backlight power consumption | 2.232W (Typ.) | | | 13 | Panel power consumption | 0.7W(Typ.) | | | 14 | Weight | 212g | | Note 1: Refer to Mechanical Drawing. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 02/16 # 2.Pin Assignment A 30pin connector is used for the module electronics interface. | Pin No. | Symbol | Description | |---------|----------|---------------------------------------| | 1 | VSS | Ground | | 2 | VCC | Power Supply(3.3V typ.) | | 3 | VCC | Power Supply(3.3V typ.) | | 4 | VEDID | DDC 3.3V power | | 5 | GSP | GSP(Reserved) | | 6 | CLKEDID | DDC clock | | 7 | DATAEDID | DDC data | | 8 | Rxin0- | Negative LVDS differential data input | | 9 | Rxin0+ | Positive LVDS differential data input | | 10 | VSS | Ground | | 11 | Rxin1- | Negative LVDS differential data input | | 12 | Rxin1+ | Positive LVDS differential data input | | 13 | VSS | Ground | | 14 | Rxin2- | Negative LVDS differential data input | | 15 | Rxin2+ | Positive LVDS differential data input | | 16 | VSS | Ground | | 17 | RxCLK- | Negative LVDS differential data input | | 18 | RxCLK+ | Positive LVDS differential data input | | 19 | VSS | Ground | | 20 | NC | No Connection(Reserved) | | 21 | Vdc | LED Anode | | 22 | Vdc | LED Anode | | 23 | NC | No Connection(Reserved) | | 24 | Vdc1 | LED Cathode1 | | 25 | Vdc2 | LED Cathode2 | | 26 | Vdc3 | LED Cathode3 | SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 03/16 | 27 | Vdc4 | LED Cathode4 | |----|------|-------------------------| | 28 | Vdc5 | LED Cathode5 | | 29 | Vdc6 | LED Cathode6 | | 30 | NC | No Connection(Reserved) | SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 04/16 # 3. Operation Specifications ## 3.1. Absolute Maximum Ratings (Note 1) | Item | Symbol | Val | ues | Unit | Remark | | |------------------------|--------|------|-----------|------|-------------------|--| | item | Symbol | Min. | Min. Max. | | Remark | | | Power voltage | VCC | -0.3 | 5.0 | V | VSS=0V
TA=25°C | | | LED Reverse Voltage | VR | - | 30 | V | | | | Peak Forward Current | Ifp | - | 180 | V | | | | Power Dissipation | Pd | - | 2376 | mW | | | | Opertating temperature | Тор | -10 | 50 | | | | | Storage temperature | Тѕт | -20 | 60 | °C | | | Note 1: The absolute maximum rating values of this product are not allowed to be exceeded at any times. Should a module be used with any of the absolute maximum ratings exceeded, the characteristics of the module may not be recovered, or in an extreme case, the module may be permanently destroyed. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 05/16 ## 3.2. Typical Operation Conditions Test condition: GND=0V, Ta=25 °C (Note 1) | Item | Symbol | Values | | | Unit | Remark | |--------------------------|--------|--------|------|--------|------|--------| | itein | Symbol | Min. | Тур. | Max. | Unit | Kemark | | Power voltage | Vcc | 3.2 | 3.3 | 3.6 | V | Note 1 | | Input logic high voltage | Vін | 0.8Vcc | - | Vcc | V | | | Input logic low voltage | VIL | 0 | - | 0.2Vcc | V | | Note 1: Vcc setting should match the signals output voltage of customer's system board. # 3.3. Current Consumption #### 3.3.1.Current for LCD Driver | ltom | Symbol | | Values | | Ilnit | Remark | |--------------------|--------|------|--------|------|-------|----------| | Item | | Min. | Тур. | Max. | Unit | Remark | | Current for Driver | Ivcc | | 100 | 120 | mA | Vcc=3.3V | #### 3.3.2. Current for LED Driver | Itom | Symbol | Values | | | Unit | Remark | |---------------------------|------------------|--------|------|------|------|--------| | Item | Symbol | Min. | Тур. | Max. | Unit | Remark | | Voltage for LED Backlight | V_{LED} | 17 | 18 | 20 | V | Note 1 | | Current for LED Backlight | I _{LED} | 110 | 120 | 130 | mA | | | LED life time | - | 20000 | - | - | Hr | Note 2 | Note 1: The LED Supply Voltage is defined by the number of LED at Ta=25°C and ILED=120mA Note 2: The "LED life time" is defined as the module brightness decrease to 50% original brightness at Ta=25°C and ILED=120mA. The LED lifetime could be decreased if operating IL is lager than 120mA. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 06/16 ## 3.4. Power Sequence #### Power on\off: The Power sequence specifications are shown as the following table and diagram. | Symbol | | Value | Unit | Note | | |--------|------|-------|------|------|------| | Symbol | Min. | Тур. | Max. | Onit | Note | | T1 | 0.5 | - | 10 | ms | | | Т2 | 0 | 20 | 50 | ms | | | Т3 | 200 | 250 | - | ms | | | T4 | 200 | 250 | - | ms | | | Т5 | 0.5 | 20 | 50 | ms | | | Т6 | 0 | - | 20 | ms | | | Т7 | 500 | - | - | ms | | Note (1) Please don't plug or unplug the interface cable when system is turned on. Note (2) Please avoid floating state of the interface signal during signal invalid period. Note (3) It is recommended that the backlight power must be turned on after the power supply for LCD and the interface signal is valid. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 07/16 ### 3.5. Timing Characteristics #### 3.5.1. DC Electrical Characteristics | Parameter | Symbol | Values | | | Unit | Note | | |-------------------------------------|-----------|--------|-------|-------|------|-------------|--| | Parameter | Symbol | Min. | Тур. | Max. | Onit | Note | | | LVDS Different Input High Threshold | VTH(LVDS) | _ | - | +100 | mV | (1)VCM=1.2V | | | LVDS Different Input Low Threshold | VTH(LVDS) | -100 | - | - | mV | (1)VCM=1.2V | | | LVDS Common Mode Voltage | Vсм | 1.125 | 1.200 | 1.375 | V | (1) | | | LVDS Different Input Voltage | IVıdI | 200 | - | 600 | mV | (1) | | | LVDS Terminating Resistor | R⊤ | 90 | 100 | 110 | Ohm | - | | Note(1): The parameters of LVDS signals are defined as the following figures. #### 3.5.2. Timing Table The input signal timing specification shown as the following table and timing diagram | Signal | Item | Symbol | Min. | Тур. | Max. | Unit | Note | |--------|-----------------------------------|--------|------|------|------|------|------| | DCLK | Frequency | 1/Tc | 52 | 65 | 71 | MHZ | - | | | Vertical Total Time | TV | 778 | 806 | 845 | TH | - | | DE - | Vertical Active Display Period | TVD | - | 768 | - | TH | - | | | Vertical Active Blanking Period | TVB | - | 32 | - | TH | - | | | Horizontal Total Time | TH | - | 2084 | - | Тс | - | | | Horizontal Active Display Period | THD | - | 1024 | - | Тс | - | | | Horizontal Active Blanking Period | ТНВ | 10 | 38 | 77 | Н | - | Note(1):Because this module is operated DE only mode. Hsync and Vsync are ignored. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 08/16 #### INPUT SIGNAL TIMING DIAGRAM #### 3.5.3.LVDS Data Input Format SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 09/16 # 4. Optical Specifications | lto | Symbol | ol Condition | | Values | | | D | | |-------------------------|--------|------------------------------------|------|--------|------|--------|------------------|--| | Item | Symbol | Condition | Min. | Тур. | Max. | Unit | Remark | | | | θι | Φ=180°(9 o'clock) | - | 85 | - | | | | | Viewing angle | θR | Φ=0°(3 o'clock) | - | 85 | - | degree | Note 4 | | | (Cr≥ 10) | Өт | Φ=90°(12 o'clock) | - | 85 | - | uegree | Note 1 | | | | θв | Φ=270°(6 o'clock) | - | 85 | - | | | | | Response time | Ton | | - | 10 | 20 | msec | Note 3 | | | ivesponse time | Toff | | - | 15 | 30 | msec | Note 3 | | | Contrast ratio | CR | | 600 | 800 | - | - | Note 4 | | | Color chromaticity | Wx | Normal $\theta = \Phi = 0^{\circ}$ | 0.26 | 0.31 | 0.36 | | Note 2 | | | Color cirromaticity | WY | | 0.28 | 0.33 | 0.38 | - | Note 5
Note 6 | | | Luminance | L | | 250 | 300 | - | cd/m2 | Note 6 | | | Luminance
uniformity | Yυ | | 75 | 80 | - | % | Note 7 | | | Color Gamut | NTSC | | | 50 | | % | | | #### **Test Conditions:** - 1. V_{LED}=18.6V, I_L=120mA (Backlight circuit: 6 series connection, 6 parallel connection), the ambient temperature is 25°C. - 2. The test system refer to Note 2. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 10/16 Note 1: Definition of viewing angle range Fig. 4-1 Definition of viewing angle #### Note 2: Definition of optical measurement system The optical characteristics should be measured in dark room. After 30 minutes operation, the optical properties are measured at the center point of the LCD screen. (Response time is measured by Photo detector TOPCON BM-7, other items are measured by BM-5A/Field of view: 1°/Height: 500mm.) Fig. 4-2 Optical measurement system setup SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 11/16 #### Note 3: Definition of Response time The response time is defined as the LCD optical switching time interval between "White" state and "Black" state. Rise time (Ton) is the time between photo detector output intensity changed from 90% to 10%. And fall time(toff) is the time between photo detector output intensity changed from 10% to 90%. Fig. 4-3 Definition of response time Note 4: Definition of contrast ratio Contrast ratio(CR)= Luminance measured when LCD on the "White" state Luminance measured when LCD on the "Black" state Note 5: Definition of color chromaticity (CIE1931) Color coordinates measured at center point of LCD. Note 6: All input terminals LCD panel must be ground while measuring the center area of the panel. The LED driving condition is IL=120mA. # POROSION 厦门炬垄森科技有限公司 # Xiamen Toroson Technology Co., Ltd SPEC NO.: VL097IA13V.1 Page: 12/16 Date: 2019/06/25 Note 7: Definition of Luminance Uniformity Active area is divided into 9 measuring areas (Refer to Fig. 4-4). Every measuring point is placed at the center of each measuring area. Luminance Uniformity(Yu) = $$\frac{Bmin}{Bmax}$$ L----- Active area length W----- Active area width Fig. 4-4 Definition of measuring points Bmax: The measured maximum luminance of all measurement poition. Bmin: The measured minimum luminance of all measurement poition. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 13/16 # 5. Reliability Test Items (Note3) | Item | Test Condition | Remark | | | | |---|---|----------------|---|--|-----------| | High Temperature Storage | Ta = 60°C 120hrs | | A,B,C,D,E | | | | Low Temperature Storage | Ta = -20°C | 120hrs | A,B,C,D,E | | | | High Temperature Operation | Ta = 50°C | 120hrs | A,B,C,D,E | | | | Low Temperature Operation | Ta = -10°C | = -10°C 120hrs | | | | | Operate at High
Temperature and Humidity | +40°C,90%RH 120hrs | | A,B,C,D,E | | | | Thermal Shock | -20°C/30 min~+60°C/3
total 100 cycles, Start w
temperature and end wi
temperature. | A,B,C,D,E | | | | | Vibration Test | Sweep:10Hz~55Hz~10Hz
2 hours for each direction of
X. Y. Z.(6 hours for total) | | A,B,C,D,E | | | | Package Vibration Test | Random Vibration:
0.015G*G/Hz from 5-200HZ,
-6dB/Octave from 200-500HZ
2 hours for each direction of X. Y. Z.
(6 hours for total) | | 0.015G*G/Hz from 5-200HZ,
-6dB/Octave from 200-500HZ
2 hours for each direction of X. Y. Z. | | A,B,C,D,E | | Package Drop Test | Height:60 cm
1 corner, 3 edges, 6 surfaces | | A,B,C,D,E | | | | Electro Static Discharge | ±2KV, Human Body Mode,
100pF/1500Ω | | A,B,C,D,E | | | #### **XCriterion**: - A.LCM each function is OK. - B.LCM appearance inspection without abnormalities (Including scratch, damage, corrosion and serious deformation). - C.LCM brightness above the Min. value of Spec. - D.Luminance uniformity above the Min. value of Spec. - E.Color chromaticity within tolerance range. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 14/16 ## 6. General Precautions ## 6.1. Safety Liquid crystal is poisonous. Do not put it in your mouth. If liquid crystal touches your skin or clothes, wash it off immediately by using soap and water. ## 6.2. Handling - 1. The LCD panel is plate glass. Do not subject the panel to mechanical shock or to excessive force on its surface. - 2. The polarizer attached to the display is easily damaged. Please handle it carefully to avoid scratch or other damages. - 3. To avoid contamination on the display surface, do not touch the module surface with bare hands. - 4. Keep a space so that the LCD panels do not touch other components. - 5. Put cover board such as acrylic board on the surface of LCD panel to protect panel from damages. - 6. Transparent electrodes may be disconnected if you use the LCD panel under environmental conditions where the condensation of dew occurs. - 7. Do not leave module in direct sunlight to avoid malfunction of the lcs. ## 6.3. Static Electricity - 1. Be sure to ground module before turning on power or operating module. - 2. Do not apply voltage which exceeds the absolute maximum rating value. ### 6.4. Storage - 1. Store the module in a dark room where must keep at $25\pm10^\circ \text{C}$ and 65% RH or less. - 2. Do not store the module in surroundings containing organic solvent or corrosive gas - 3. Store the module in an anti-electrostatic container or bag. ### 6.5. Cleaning - 1. Do not wipe the polarizer with dry cloth. It might cause scratch. - 2. Only use a soft sloth with IPA to wipe the polarizer, other chemicals might permanent damage to the polarizer. SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 15/16 # 7. Mechanical Drawing SPEC NO.: VL097IA13 V.1 Date: 2019/06/25 Page: 16/16 # 8. Package Drawing